Abstract

Insulin resistance is followed by several prevalent diseases. The most common condition with insulin resistance is obesity, particularly when localized to abdominal, visceral regions. A summary of recent reviews on the pathogenesis of systemic insulin resistance indicates that major factors are decreased insulin effects on muscular glycogen synthase or preceding steps in the insulin signalling cascade, on endogenous glucose production and on circulating free fatty acids (FFA) from adipose tissue lipolysis. Contributions of morphologic changes in muscle and other factors are considered more uncertain. Newly developed methodology has made it possible to determine more precisely the neuroendocrine abnormalities in abdominal obesity including increased cortisol and adrenal androgen secretions. This is probably due to a hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, amplified by inefficient feedback inhibition by central glucocorticoid receptors, associated with molecular genetic defects. Secondly, secretion of gender-specific sex steroid hormones becomes inhibited and the sympathetic nervous system activated. At this stage the HPA axis shows signs of a 'burned-out' condition, and cortisol secretion is no longer elevated. Cortisol counteracts the insulin activation of glycogen synthase in muscle, the insulin inhibition of hepatic glucose production and the insulin inhibition of lipolysis in adipose tissue, leading to the well-established systemic insulin resistance caused by excess cortisol. This is exaggerated by increased free fatty acid mobilization, particularly with a concomitant elevation of the activity of the sympathetic nervous system. Furthermore, capillarization and fiber composition in muscle are changed. These are the identical perturbations responsible for insulin resistance in recent reviews. The diminished sex steroid secretion in abdominal obesity has the same consequences. It is thus clear that insulin resistance may be induced by neuroendocrine abnormalities, such as those seen in abdominal obesity. These endocrine perturbations also direct excess fat to visceral fat depots via mechanisms that are largely known, indicating why abdominal obesity is commonly associated with insulin resistance. This possible background to the most prevalent condition of insulin resistance has been revealed by development of methodology that allows sufficiently sensitive measurements of HPA axis activity. These findings demonstrate the power of neuroendocrine regulations for somatic health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call