Abstract

The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call