Abstract

Bi-directional communication between the hypothalamus–pituitary–adrenal (HPA)-axis and the sympathetic nervous system with the immune system is crucial to ensure homeostasis. Shared use of ligands and especially receptors forms a key component of this bi-directional interaction. Glucocorticoids (GC), the major end products of the HPA-axis differentially modulate immune function. Cytokines, especially interleukin-1 (IL-1), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), ensure immune signalling to the neuroendocrine system. In addition, hormones from leukocyte origin such as corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and β-endorphin, as well as centrally synthesised and secreted cytokines, contribute to the communication network. In teleost fish cortisol is the major product of the hypothalamus–pituitary–interrenal (HPI)-axis which is the teleost equivalent of the HPA-axis. Moderate and substantial increases in cortisol during stressful circumstances negatively affect B-lymphocytes, whereas rescue of neutrophilic granulocytes may support innate immunity. Recent elucidation of lower vertebrate cytokine sequences has facilitated research into neuroendocrine–immune interactions in teleosts and the first evidence for a significant function of interleukin-1 in the bi-directional communication is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.