Abstract

The results of our investigations into the localization of Na+,K+-pump activity in pancreatic and parotid acinar cells and the effects of hormones and neurotransmitters on pump turnover can be integrated with data on other aspects of stimulus-response coupling to construct models of the neurohumoral control of protein, fluid, and electrolyte secretion (Fig. 23). In both tissues, Ca2+ and cyclic AMP serve as intracellular messengers. In pancreatic acinar cells, the Ca2+-dependent pathway activated by the occupation of CCK or cholinergic receptors provides the primary stimulus for digestive enzyme secretion. Cyclic AMP plays a comparatively minor role; VIP and secretin are much less effective stimulators of protein secretion. Conversely, cyclic AMP levels in parotid acinar cells, which are modulated primarily through occupation of beta-adrenergic receptors, are a major determinant of enzyme secretion. Activation of the Ca2+-dependent pathway by cholinergic or alpha-adrenergic agonists or substance P is less important. The presence of dual control processes in each gland suggests that the observed differences in effectiveness of cyclic AMP- versus Ca2+-dependent secretagogues may reflect not different mechanisms, but rather a shift in the relative emphasis placed on each pathway. This emphasis could conceivably result from subtle variations in the interaction between cellular protein kinases and phosphatases and their phosphoprotein substrates. Electrolyte secretion, on the other hand, appears to involve both discrete and common entities. In pancreatic acinar cells from rodent species, cholinergic or CCK receptor occupancy elicits a Ca2+-dependent increase in the open-state probability of nonselective cation channels in the basolateral plasma membrane. The resultant influx of Na+ and efflux of K+ is most probably the factor which activates Na+, K+-pumps. Based on electron probe studies of the effects of cholinergic agonists on acinar cell Na+ and K+ contents discussed earlier, a transient reduction in the intracellular K+/Na+ ratio of up to 4-fold may occur. A shift of this magnitude in the cytoplasmic microenvironment of the Na+, K+-pump clearly would have a stimulatory influence (see discussion by Jorgensen, 1980). In addition, Ca2+ itself may have direct effects on Na+,K+-pump activity. Calcium at levels much above 1 microM progressively inhibits Na+,K+-ATPase activity (Tobin et al., 1973; Yingst and Polasek, 1985). In unstimulated guinea pig pancreatic acinar cells, Ca2+i measured by quin-2 fluorescence was 161 +/- 13 nM (Hootman et al., 1985a) which increased to a maximal concentration of 803 +/- 122 nM following CCh stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.