Abstract

The authors review the application of a variety of neuroendocrine cell markers to identify pancreatic islet cells and tumors. In the past, several empiric histochemical techniques had been used to demonstrate neuroendocrine cells, particularly the Grimelius argyrophilic stain. The development of immunohistochemistry made it possible to demonstrate specific cell products such as regulatory peptides, thus allowing the classification of pancreatic neuroendocrine tumors with a view to clinical symptoms. However, it is not always possible to visualize regulatory peptides in these tumors. It is therefore important to use broad-spectrum neuroendocrine cell markers to identify the neuroendocrine nature. These markers are proteins localized in the secretory granules (core- or membrane-related), in the cytosol, or in the cellular membrane. The markers most commonly used in routine histopathology are the secretory granule proteins chromogranin A and synaptophysin and the cytosolic enzyme neuronspecific enolase. Other new markers (e.g., synaptic vesicle protein 2) are of general diagnostic value. Region-specific antibodies to chromogranin A can be valuable in differentiating between benign and malignant neuroendocrine tumors. Some markers may be related to the functioning characteristics of pancreatic neuroendocrine tumors, such as prohormone convertases. In addition, markers giving further complementary information have been identified, such as five somatostatin receptor subtypes, the expression of which varies markedly in pancreatic neuroendocrine tumors. Antibodies against all somatostatin receptor subtypes are now commercially available, and immunohistochemical investigation of its expression should be routinely applied when considering treatment with somatostatin analogs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call