Abstract

More than 15 years ago, we have proposed that melanocytes are sensory and regulatory cells with computing capability, which transform external and/or internal signals/energy into organized regulatory network(s) for the maintenance of the cutaneous homeostasis. This concept is substantiated by accumulating evidence that melanocytes produce classical stress neurotransmitters, neuropeptides and hormones, express corresponding receptors and these processes are modified and/or regulated by ultraviolet radiation, biological factors or stress. Examples of the above are catecholamines, serotonin, N-acetyl-serotonin, melatonin, proopiomelanocortin-derived adrenocorticotropic hormone, beta-endorphin or melanocyte-stimulating hormone peptides, corticotropin releasing factor, related urocortins and corticosteroids including cortisol and corticosterone as well as their precursors. Furthermore, their production is not random, but hierarchical and follows the structures of classical neuroendocrine organizations such as hypothalamic-pituitary-adrenal axis, serotoninergic, melatoninergic and catecholaminergic systems. An example of an intrinsic but overlooked neuroendocrine activity is production and secretion of melanogenesis intermediates including l-DOPA or its derivatives that could enter circulation and act on distant sites. Such capabilities have defined melanocytes as neuroendocrine cells that not only coordinate cutaneous but also can affect a global homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.