Abstract
The magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric activity in the brain from the measurements of the neuromagnetic field in the outer space. The localization of neuroelectric sources from MEG data results in an ill-posed and ill-conditioned inverse problem that requires regularization techniques to be solved. In this paper we propose a new inversion method based on random spatial sampling that is suitable to localize focal neuroelectric sources. The method is fast, efficient and requires little memory storage. Moreover, the numerical tests show that the random sampling method has a high spatial resolution even in the case of deep source localization from noisy magnetic data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.