Abstract

The origin of vascular pericytes (PCs) and smooth muscle cells (vSMCs) in the brain has hitherto remained an open question. In the present study, we used the quail-chick chimerization technique to elucidate the lineage of cranial PCs/vSMCs. We transplanted complete halves of brain anlagen, or dorsal (presumptive neural crest [NC]) or ventral cranial neural tube. Additional experiments included transplantations of neuroectoderm into limb mesenchyme, and of head mesoderm or limb mesenchyme into paraxial head mesoderm. After interspecific transplantation of quail brain rudiment, graft-derived vSMCs were found in the vessel walls of the grafted brain. Notably, transplanted ventral neural tube also gave rise to vSMCs. After grafting of quail head mesoderm, quail endothelial cells were found in the host brain, but no vSMCs of donor origin. Grafting of quail whole or ventral neural tube into the limb bud led to endowment of graft and host vessels with graft-derived vSMCs. Quail limb bud mesenchyme contributed to vSMCs in the ectopic neural graft, but, when transplanted into paraxial head mesenchyme, it did not form intraneural vSMCs. After orthotopic transplantation of cranial NC, graft-derived vSMCs were not only found in meninges and brain of the operated side, but also on the contralateral side. Our results show that 1) avian cranial neuroectoderm is able to differentiate into vSMCs of the brain; 2) this potential is not restricted to the prospective NC; and 3) neither cranial mesoderm nor cranially transplanted limb bud mesoderm can give rise to brain vSMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call