Abstract
In this paper, for nonlinear stochastic systems, the optimal tracking control problem (OTCP) is solved by adaptive dynamic programming (ADP) techniques. Firstly, the complex OTCP is transformed into a stable control optimization problem by reconstructing a new stochastic augmented system. Then, simplifying the actor-critic architecture and reducing the computational load, critic neural networks (NNs) is used in iterative learning. And by using Lyapunov method, the ultimate uniform boundedness (UUB) of the tracking system is proved. To be precise, no literature has been published on the OTCP for nonlinear Itô type stochastic systems via the ADP method. This work is the first attempt in this field. Finally, in simulation, the method is applied to sinusoidal waveform and periodic rectangular step signal, and even unbounded exponential waveform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.