Abstract
Biallelic genetic variants in N-acetylneuraminic acid synthase (NANS), a critical enzyme in endogenous sialic acid biosynthesis, are clinically associated with neurodevelopmental disorders. However, the mechanism underlying the neuropathological consequences has remained elusive. Here, we found that NANS mutation resulted in the absence of both sialic acid and protein polysialylation in the cortical organoids and notably reduced the proliferation and expansion of neural progenitors. NANS mutation dysregulated neural migration and differentiation, disturbed synapse formation, and weakened neuronal activity. Single-cell RNA sequencing revealed that NANS loss of function markedly altered transcriptional programs involved in neuronal differentiation and ribosomal biogenesis in various neuronal cell types. Similarly, Nans heterozygous mice exhibited impaired cortical neurogenesis and neurobehavioral deficits. Collectively, our findings reveal a crucial role of NANS-mediated endogenous sialic acid biosynthesis in regulating multiple features of human cortical development, thus linking NANS mutation with its clinically relevant neurodevelopmental disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.