Abstract

The administration of dexamethasone has been associated with suboptimal neurodevelopment. We aimed to compare the development of extremely premature infants treated or not with alternatives to dexamethasone: betamethasone, hydrocortisone hemisuccinate. This retrospective cohort study included infants born before 29 weeks of gestational age, treated or not with late (day ≥ 7) postnatal steroids (betamethasone, hydrocortisone hemisuccinate). The neurodevelopment outcome was evaluated at 24 months corrected age, after adjustment on comorbidities of extreme prematurity. In order to analyse their overall development, data about growth and respiratory outcomes were collected. Among the 192 infants included, 59 (30.7%) received postnatal steroids. Suboptimal neurodevelopment concerned 37/59 (62.7%) postnatal steroid-treated and 43/133 (38.1%; p = 0.002) untreated infants. However, in multivariable analysis, only severe neonatal morbidity (p = 0.007) and male gender (p = 0.027) were associated with suboptimal neurodevelopment outcome at 24 months. Conclusions: Betamethasone or hydrocortisone hemisuccinate treatment was not an independent risk for suboptimal neurological development, growth and respiratory outcomes assessed at 24 months corrected age in extremely premature infants. Registration number: The study was registered on the ClinicalTrials.gov register: NCT05055193.What is Known:• Late postnatal steroids are used to treat bronchopulmonary dysplasia• Meta-analyses warned against the neurological risk of dexamethasone use during neonatal period. Early or late hydrocortisone hemisuccinate has been evaluated in multiple studies, none of which have reported an adverse effect on neurodevelopment at least to 2 years. Data about the use of betamethasone are scarce.What is New:• The risk of suboptimal neurodevelopment was higher among extremely premature infants who received postnatal steroids when compared to those who did not.• Betamethasone and hydrocortisone hemisuccinate treatment was not an independent risk factor for suboptimal neurodevelopment at 24 months corrected age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call