Abstract

Investigation of human neurodegeneration-related aggregates of beta-amyloid 1–42 (Aβ42) on bdelloid rotifers is a novel interdisciplinary approach in life sciences. We reapplied an organ size-based in vivo monitoring system, exploring the autocatabolism-related alterations evoked by Aβ42, in a glucose-supplemented starvation model. The experientially easy-to-follow size reduction of the bilateral reproductive organ (germovitellaria) in fasted rotifers was rescued by Aβ42, serving as a nutrient source- and peptide sequence-specific attenuator of the organ shrinkage phase and enhancer of the regenerative one including egg reproduction. Recovery of the germovitellaria was significant in comparison with the greatly shrunken form. In contrast to the well-known neurotoxic Aβ42 (except the bdelloids) with specific regulatory roles, the artificially designed scrambled version (random order of amino acids) was inefficient in autocatabolism attenuation, behaving as negative control. This native Aβ42-related modulation of the ‘functionally reversible organ shrinkage’ can be a potential experiential and supramolecular marker of autocatabolism in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.