Abstract

Administration of ethanol during brain development induces widespread neuronal loss in various structures of the brain. Here, we show that a single administration of ethanol given during the early postnatal period can induce not only neuronal death, but also an increase in proliferation of the progenitor cells in the dentate gyrus of hippocampal formation in rats. Ethanol (1.5 or 3 g/kg, i.p.) administered to 10-day-old rats induced massive neuronal degeneration as evidenced by TUNEL assay in the dentate gyrus. The neuronal death induced by a high dose of ethanol (3 g/kg) was accompanied by an enhanced proliferation of the progenitor cells labeled by bromodeoxyuridine (BrdU, 50 mg/kg, i.p.) in dentate gyrus. One and 3 weeks following ethanol or saline administration, ethanol-treated rats still had significantly more BrdU-labeled cells than control animals. In ethanol-treated rats, a higher proportion of newly born cells acquired the phenotype of immature postmitotic neurons whereas the final differentiation into calbindin-expressing granule cells remained unchanged. The proportion of astroglial cells was also increased in ethanol-treated rats. Thus, ethanol given in high doses not only induces neurodegeneration but also initiates the process of neuro- and gliogenesis, which might be responsible for the neuronal and glial reorganization of the dentate gyrus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.