Abstract

Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.

Highlights

  • Diabetic retinopathy (DR) is a major complication of diabetes

  • It has been shown that retinal neurodegeneration causes early microvascular changes that occur in diabetic retinopathy

  • We found that memantine and gabapentin (Neuritin) administration to diabetic rats reduced caspase-3 activity and reduced the increased levels of ROS in the diabetic retina, suggesting these agents may protect neuronal cells

Read more

Summary

Introduction

Diabetic retinopathy (DR) is a major complication of diabetes. It causes vision loss and blindness among adults worldwide. Numerous early retinal function tests in diabetic retinopathy patients, as well as a number of cellular and molecular studies in the retinas of diabetic experimental animals, suggest that neurons are vulnerable to damage shortly after the onset of diabetes. This vulnerability exists before any sign of vascular damage [2,3]. It has been shown that retinal neurodegeneration causes early microvascular changes that occur in diabetic retinopathy These changes include the breakdown of the blood-retinal barrier (BRB), vasoregression and impairment of neurovascular interaction [6,8,9,10,11,12]. We discuss recent advances in understanding the neurogeneration in diabetic retina, especially due to metabolic dysregulation, as well as possible neuroprotective strategies

Neurodegenerative Factors and Potential Therapeutic Targets
Hyperglycemia
Glutamate Excitotoxicity
Nutrients and Vitamins
Metabolites of Tryptophan Pathway
Neurotrophic Factors
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.