Abstract
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.