Abstract

In this paper, we present a neurocontroller via adaptive learning rates (ALRs) for stable path tracking of mobile robots. The self recurrent wavelet neural networks (SRWNNs) are employed as two neurocontrollers for the control of the mobile robot. Since the SRWNN combines the advantages such as the multi-resolution of the wavelet neural network and the information storage of the recurrent neural network, it can easily cope with the unexpected change of the system. Specially, the ALR algorithm in the gradient-descent method is extended for the multi-input multi-output system and is applied to train the parameters of the SRWNN controllers. The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the effectiveness and stability of the proposed controller.KeywordsMobile RobotLearning RateMother WaveletReference TrajectoryWavelet Neural NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.