Abstract

Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the “plant”, comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.

Highlights

  • Posture and movement disorders in neurological diseases like stroke and in ageing are of increasing clinical concern; due to both an increasing incidence and prevalence as a result of aging of the society as well as increasing awareness of socioeconomic impact, i.e., disability and as a result, loss of autonomy

  • To reduce the impact of posture and movement disorders in neurological diseases it is crucial to investigate how the ‘‘altered’’ system adapts to varying tasks and environmental conditions

  • In this paper we argue that modulatory capacity of the neuromechanical system can best be assessed when properties of the neural and biomechanical system are addressed synchronously

Read more

Summary

Introduction

Posture and movement disorders in neurological diseases like stroke and in ageing are of increasing clinical concern; due to both an increasing incidence and prevalence as a result of aging of the society as well as increasing awareness of socioeconomic impact, i.e., disability and as a result, loss of autonomy. Disability can be translated to the inability to adequately cope with daily environmental challenges. Our body segments interact with fixed and moving obstacles and objects in the environment. This involves exchange of mass, energy, linear or angular momentum in order to produce adequate posture and movement patterns. For example when reaching and grasping objects, the right amount of muscle force is required to properly control the joint impedance

System identification for clinical benefit
The Clinical Problem
Control and Plant Interaction
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call