Abstract

Our ability to select relevant information from the environment is limited by the resolution of attention – i.e., the minimum size of the region that can be selected. Neural mechanisms that underlie this limit and its development are not yet understood. Functional magnetic resonance imaging (fMRI) was performed during an object tracking task in 7- and 11-year-old children, and in young adults. Object tracking activated canonical fronto-parietal attention systems and motion-sensitive area MT in children as young as 7 years. Object tracking performance improved with age, together with stronger recruitment of parietal attention areas and a shift from low-level to higher-level visual areas. Increasing the required resolution of spatial attention – which was implemented by varying the distance between target and distractors in the object tracking task – led to activation increases in fronto-insular cortex, medial frontal cortex including anterior cingulate cortex (ACC) and supplementary motor area, superior colliculi, and thalamus. This core circuitry for attentional precision was recruited by all age groups, but ACC showed an age-related activation reduction. Our results suggest that age-related improvements in selective visual attention and in the resolution of attention are characterized by an increased use of more functionally specialized brain regions during the course of development.

Highlights

  • Visual selective attention is the ability to modulate perception in order to optimize processing according to our current task goals (Carrasco, 2011)

  • Accuracy increased with age [F(2,32) = 95.85, p < 0.0001], with significant increases between all age groups [both t(21) > 2.6, p < 0.025; Bonferroni corrected significance threshold 0.05/2 = 0.025]

  • There was a significant main effect of distance [F(2,64) = 49.44, p < 0.0001] reflecting that accuracy increased with distance [both t(34) > 2.5, p < 0.025]

Read more

Summary

Introduction

Visual selective attention is the ability to modulate perception in order to optimize processing according to our current task goals (Carrasco, 2011). Developmental research suggests that several aspects of children’s selective attention undergo substantial changes in early childhood (e.g., Ridderinkhof and van der Stelt, 2000; Scerif, 2010), including the resolution of attention (Wolf and Pfeiffer, 2014). The neural mechanisms underlying the development of attentional resolution are at present unknown. This problem touches upon two intimately related aspects, namely the development of the neurocognitive mechanisms underlying visuo-spatial selective attention per se and the specific development of the precision of visuo-spatial selective attention. Developmental research on both topics is so far scarce

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.