Abstract

ObjectiveThalamofrontal cortical network and limbic system are proposed to be involved in psychogenic nonepileptic seizure (PNES) and idiopathic generalized epilepsy (IGE). This study aimed to investigate neurochemical changes in prefrontal cortex, thalamus, and limbic circuits in patients with PNES and IGE. We also analyzed the interaction between cognitive functions and neurochemical changes in both groups. MethodsHydrogen proton magnetic resonance spectroscopy (1H-MRS) was used to measure N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), glutamate–glutamine (Glx), and myo-inositol (MI). The voxels were placed on the bilateral dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and thalamus. Attention and inhibitory control, as well as general intelligence status, were investigated using the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT) and the Wechsler Adult Intelligence Scale (WAIS), respectively, in patients with PNES and IGE, as well as healthy volunteers. ResultsThe 1H-MRS showed a decreased ratio of NAA/Cr in the right and left thalamus, right DMPFC, and right ACC in patients with IGE and PNES. Furthermore, a decrease of the NAA/Cr ratio in the left DMPFC and an increase of NAA/Cr ratio in the right DLPFC were observed in patients with PNES compared with the controls. The patient groups had a decreased ratio of Cho/Cr in right ACC compared with the healthy subjects. Moreover, the NAA/Cr ratio in the left thalamus and left DMPFC was correlated with seizure frequency in patient groups. Reduced NAA/Cr ratio in the right ACC and left DLPFC were also correlated with poor IVA-CPT scores. ConclusionThis study highlighted the dysfunction in prefrontal-thalamic–limbic circuits and impairment in neurocognition in patients with PNES and IGE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call