Abstract

In mandibulate arthropods, the primary olfactory centers, termed olfactory lobes in crustaceans, are typically organized in distinct fields of dense synaptic neuropils called olfactory glomeruli. In addition to olfactory sensory neuron terminals and their postsynaptic efferents, the glomeruli are innervated by diverse neurochemically distinctive interneurons. The functional morphology of the olfactory glomeruli is understudied in crustaceans compared with insects and even less well understood and described in a particular crustacean subgroup, the Peracarida, which embrace, for example, Amphipoda and Isopoda. Using immunohistochemistry combined with confocal laser scanning microscopy, we analyzed the neurochemistry of the olfactory pathway in the amphipod Parhyale hawaiensis. We localized the biogenic amines serotonin and histamine as well as the neuropeptides RFamide, allatostatin, orcokinin, and SIFamide. As for other classical neurotransmitters, we stained for γ-aminobutyric acid and glutamate decarboxylase and used choline acetyltransferase as indicator for acetylcholine. Our study is another step in understanding principles of olfactory processing in crustaceans and can serve as a basis for understanding evolutionary transformations of crustacean olfactory systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call