Abstract

The first two postnatal weeks are the most dynamic in the development of brain stem respiratory nuclei in the rat, the primary model for this review. Several neurochemicals (glutamate, glycine receptors, choline acetyltransferase, serotonin, norepinephrine, and thyrotropin-releasing hormone) increase expression with age, while others (GABA, serotonin receptor 1A, substance P, neurokinin 1 receptor, and somatostatin) decrease their expression. Surprisingly, a dramatic shift occurs at postnatal day (P) 12 in the rat. Excitatory neurotransmitter glutamate and its NMDA receptors fall precipitously, whereas inhibitory neurotransmitter GABA, GABA(B), and glycine receptors rise sharply. A concomitant drop in cytochrome oxidase activity occurs in respiratory neurons. Several receptor types undergo subunit switches during development. Notably, GABA(A) receptors switch prevalence from alpha3- to an alpha1-dominant form at P12 in the pre-Bötzinger complex of the rat. The transient dominance of inhibitory over excitatory neurotransmission around P12 may render the respiratory system sensitive to failure when stressed. Relating these neurochemical changes to physiological responses in animals and to sudden infant death syndrome in humans will be a challenge for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.