Abstract

Resistive memories (RMs) using amorphous SiC (a-SiC) as the solid electrolyte material have been developed with a Cu/a-SiC/Au stack configuration. Excellent non-volatile bipolar switching characteristics have been observed. An extremely high ON/OFF current ratio in the order of 109 has been observed corresponding to distinctive low (LRS) and high (HRS) resistance states, which is potentially beneficial for future RM applications with reliable state detection and simple periphery circuits. The deposited a-SiC has been extensively characterised for its micro/nanostructures, chemical composition as well as electrical properties. The switching mechanism is investigated through detailed analysis of corresponding I–V curves. The results imply a filamentary conduction mechanism at LRS and Schottky emission mechanism at HRS, especially in the subsequent switching cycles. The contrasting conducting material properties and mechanisms at LRS and HRS contribute to the high ON/OFF ratio. Overall, Cu/a-SiC based RMs demonstrate a number of high performance potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.