Abstract

The subventricular zone (SVZ) is the only germinal zone of the developing mammalian forebrain to persist postnatally. Although the SVZ has been known to give rise to most of the glial cells of the forebrain, several studies over the past few years have shown that the cells of the neonatal and adult SVZ can also generate neurons. Recent studies have demonstrated that a discrete region of the anterior part of the neonatal SVZ is composed exclusively of neuronal progenitor cells, whose progeny become interneurons of the olfactory bulb. This review will explore the properties that distinguish this anterior segment of the neonatal subventricular zone (SVZa) from the more posterior, gliogenic region. The cells of the SVZa, as well as its anterior extension forming the rostral migratory stream that enters the middle of the olfactory bulb, have antigenic characteristics of a neuronal phenotype, yet continue to divide during migration. In vitro, SVZa progenitor cells also retain a neuronal phenotype despite persistent division. Intriguingly, SVZa cells and their progeny migrate long distances along a highly stereotypical pathway. To better understand the guidance cues used by SVZa-derived cells during migration, both homotopic and heterotopic transplantation experiments have been conducted. SVZa cells homotopically transplanted into another animal's SVZa migrate with the recipient's endogenous SVZa cells in an indistinguishable manner, whereas those from the embryonic telencephalic ventricular zone, normally destined to follow radial glia to the cerebral cortex, fail to migrate following transplantation to the SVZa. SVZa cells transplanted heterotopically into the neonatal and adult striatum were able to disperse from their site of implantation. Thus, SVZa cells are special proliferating cells for which the rostral migratory stream is a particularly permissive pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.