Abstract

In recent years, advances in the fields of neuroimaging and experimental psychology increased our understanding of the basic mechanisms of classical conditioning and learning, contributing to our knowledge of the neurobiology of anxiety disorders. Research has shown that the amygdala is the cornerstone of fear circuitry and that abnormalities in amygdala pathways can affect the acquisition and expression of fear conditioning. Activation of the amygdala in response to disorder-relevant stimuli has been observed in anxiety disorders. The roles of the hippocampus, nucleus accumbens, periaqueductal gray, and insular and medial prefrontal cortices in response to fear have been identified as well. Neurotransmitters such as serotonin, dopamine, γ-aminobutyric acid, glutamate, and some neurosteroids play an important part in the neurobiology of anxiety disorders. Neuropeptides such as oxytocin, neuropeptide Y, galanin, and cholecystokinin have been shown to modulate stress response. Drugs such as N-methyl-d-aspartate (NMDA) antagonists and blockers of voltage-gated calcium channels in the amygdala are anxiolytic. Fear extinction, which entails new learning of fear inhibition, is the mechanism of effective antianxiety treatments such as d-cycloserine, a partial NMDA agonist. Extinction is thought to occur by the medial prefrontal cortex, which inhibits the lateral amygdala under hippocampal modulation. Harnessing extinction to delink neutral stimuli from aversive responses is an important goal of the psychotherapy and pharmacotherapy of anxiety disorders. Discovery of the role of microRNAs in the etiology of anxiety disorders and their possible utility as targets to treat these disorders is fascinating. In this review, we discuss the neurobiology of anxiety disorders, which will help us better manage them clinically. This review contains 5 figures, 6 tables, and 39 references. Key words: Amygdala, anxiety disorders, neurobiology, fear conditioning, neurocircuitry, neurotransmitters, neuropeptides, neurosteroids, endogenous opioids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.