Abstract

The paper presents the analysis of neurobiological data on the existence of the structure of a parallel-hierarchical network. Discussed method of parallel-hierarchical transformation based on population coding and its application for the pattern recognition task. Based on the analysis, we can conclude that using the methods proposed, it is possible to measure the geometric parameters and properties of images, which can significantly increase the efficiency of processing, in particular estimating the center of mass based on moment characteristics. Experimental results demonstrate that due to various destabilizing factors, accurately measuring the energy center coordinates of laser beam spot images is challenging. However, training the PI network and classifying the fragments into "good" and "bad" can considerably enhance the accuracy of these measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.