Abstract

The feedback actions of ovarian oestradiol during the female reproductive cycle are among the most unique in physiology. During most of the cycle, oestradiol exerts homeostatic, negative feedback upon the release of gonadotrophin-releasing hormone (GnRH). Upon exposure to sustained elevated oestradiol levels, however, there is a switch in the feedback effects of this hormone to positive, resulting in induction of a surge in the release of GnRH that serves as a neuroendocrine signal to initiate the ovulatory cascade. We review recent developments stemming from studies in an animal model exhibiting daily switches between positive and negative feedback that have probed the neurobiological mechanisms, including changes in neural networks and intrinsic properties of GnRH neurones, underlying this switch in oestradiol action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.