Abstract

Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer's disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call