Abstract

As an alternate of bisphenol A (BPA), bisphenol S (BPS) is now widely used to produce our daily consumer goods. Some studies have shown that BPS has the potential to disrupt the reproduction and glucose homeostasis. However, the impact of BPS on the nervous system remains unclear. The purpose of this study is to investigate the impact of BPS on the nervous systems of zebrafish in their early growing stages. The 96 h-LC50 value of BPS to zebrafish larvae was 323 mg/L (95%CI: 308–339 mg/L). Zebrafish embryos were exposed to BPS at concentrations of 0, 0.03, 0.3 and 3.0 mg/L until 6 days postfertilization. Our results showed that 0.3 and 3.0 mg/L BPS exposure markedly decreased locomotor behavior, accompany by the increased oxidative stress, promoted apoptosis and altered retinal structure in zebrafish. In addition, the expression levels of six neurodevelopment genes (α1-tubulin, elavl3, gap43, mbp, syn2a and gfap) were downregulated after 3.0 mg/L BPS treatment. In conclusion, BPS may affect locomotor behavior and alter retinal structure in zebrafish larvae partially by increasing oxidative stress, and by suppressing the expression levels of neurodevelopment genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.