Abstract

To investigate the effect of multiple sclerosis (MS) on corneal and retinal nerve fiber by quantifying corneal subbasal nerve fibers and retinal ganglion cells. A total of 46 eyes of 23 patients with MS and 42 eyes of 21 healthy subjects were included in the study. All patients and healthy subjects underwent a comprehensive ocular examination. In vivo confocal microscopy with Heidelberg Retina Tomograph in association with Rostock Cornea Module (Heidelberg Engineering, Heidelberg, Germany) and a swept-source optical coherence tomography (Topcon Corporation) were performed in all patients and healthy subjects. The number of subbasal nerve fibers and the nerve fiber density were calculated. Student t test was used to compare eyes with MS with control eyes. The normal distribution was first confirmed with the Shapiro-Wilk test. A statistically significant (P < 0.05) decrease was found for nerve fiber number, ganglion cell-inner plexiform layer, and retinal nerve fiber layer in patients with MS compared with those of healthy subjects. Moreover, an inverse correlation was found between retinal nerve fiber layer (r = -0.32), nerve fiber number (r = -0.47), and ganglion cell-inner plexiform layer (r = -0.51) and Expanded Disability Status Scale. A direct correlation between Expanded Disability Status Scale and optic neuritis frequency was found (r = 0.322). In vivo confocal microscopy showed a difference in corneal morphological parameters and retinal damage; moreover, these changes seemed to be related to the degree of neurological disability. Both retinal ganglion and trigeminal cell atrophy measurements could become affordable and accessible biomarkers for clinical trials in progressive disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call