Abstract

The mouse heart is a popular model to study the function and autonomic control of the specialized cardiac conduction system (CCS). However, the precise identity and anatomical distribution of the intrinsic cardiac nerves that modulate the function of the mouse CCS have not been adequately studied. We aimed at determining the organization and distribution of the intrinsic cardiac nerves that supply the CCS of the mouse. In whole mouse heart preparations, intrinsic neural structures were revealed by histochemical staining for acetylcholinesterase (AChE). Adrenergic, cholinergic and peptidergic neural components were identified, respectively, by immunohistochemical labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), calcitonin gene related peptide (CGRP), substance P (SP), and protein gene product 9.5 (PGP 9.5). Myocytes of the CCS were identified by immunolabeling of hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4). In addition, the presence of CCS myocytes in atypical locations was verified using fluorescent immunohistochemistry performed on routine paraffin sections. The results demonstrate that four microscopic epicardial nerves orientated toward the sinuatrial nodal (SAN) region derive from both the dorsal right atrial and right ventral nerve subplexuses. The atrioventricular nodal (AVN) region is typically supplied by a single intrinsic nerve derived from the left dorsal nerve subplexus at the posterior interatrial groove. SAN myocytes positive for HCN4 were widely distributed both on the medial, anterior, lateral and even posterior sides of the root of the right cranial (superior caval) vein. The distribution of HCN4-positive myocytes in the AVN region was also wider than previously considered. HCN4-positive cells and thin slivers of the AVN extended to the roots of the ascending aorta, posteriorly to the orifice of the coronary sinus, and even along both atrioventricular rings. Notwithstanding the fact that cholinergic nerve fibers and axons clearly predominate in the mouse CCS, adrenergic nerve fibers and axons are abundant therein as well. Altogether, these results provide new insight into the anatomical basis of the neural control of the mouse CCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.