Abstract

Rather than arising from the passive accumulation of excess calories, obesity is a state in which the biologically defended level of body fat stores increases due to defects in the homeostatic process that matches food intake and energy expenditure over time. By deleting leptin receptors from distinct brain regions and neuronal subsets, researchers are beginning to identify the neuroanatomical substrates responsible for this regulation. In this issue of the JCI, Scott et al. demonstrate that loss of leptin receptors in a subset of hindbrain neurons increases food intake in mice, but, unlike what is observed when leptin receptors are deleted from hypothalamic neurons, these mice compensate by increasing energy expenditure and hence do not become obese. Although many brain areas can regulate energy intake and/or energy expenditure, it is likely that only a small subset of neurons actively matches the two over time. It is vital to clarify how this works if we are to improve our understanding of obesity pathogenesis and options available for its treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.