Abstract
Increasing evidence showed that learned control of metabolic activity in selected brain regions can support emotion regulation. Notably, a number of studies demonstrated that neurofeedback-based regulation of fMRI activity in several emotion-related areas leads to modifications of emotional behavior along with changes of neural activity in local and distributed networks, in both healthy individuals and individuals with emotional disorders. However, the current understanding of the neural mechanisms underlying self-regulation of the emotional brain, as well as their relationship with other emotion regulation strategies, is still limited. In this study, we attempted to delineate neuroanatomical regions mediating real-time fMRI-based emotion regulation by exploring whole brain GM and WM features predictive of self-regulation of anterior insula (AI) activity, a neuromodulation procedure that can successfully support emotional brain regulation in healthy individuals and patients. To this aim, we employed a multivariate kernel ridge regression model to assess brain volumetric features, at regional and network level, predictive of real-time fMRI-based AI regulation. Our results showed that several GM regions including fronto-occipital and medial temporal areas and the basal ganglia as well as WM regions including the fronto-occipital fasciculus, tapetum and fornix significantly predicted learned AI regulation. Remarkably, we observed a substantial contribution of the cerebellum in relation to both the most effective regulation run and average neurofeedback performance. Overall, our findings highlighted specific neurostructural features contributing to individual differences of AI-guided emotion regulation. Notably, such neuroanatomical topography partially overlaps with the neurofunctional network associated with cognitive emotion regulation strategies, suggesting common neural mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.