Abstract

ObjectivesDown syndrome (DS) is a genetic condition characterized by cognitive disability starting from infancy. Children with DS exhibit deficits in several cognitive domains, including executive function, i.e., a set of cognitive processes that heavily depend on higher-order thalamic nuclei. The goal of this study was to establish whether executive function-related thalamic nuclei of fetuses with DS exhibit neuroanatomical alterations that may contribute to the defects in higher-order control processes seen in children with DS. Patients and MethodsIn brain sections from fetuses with DS and control fetuses (gestational week 17–22), we evaluated the cellularity in the mediodorsal nucleus (MD), the centromedian nucleus (CM), and the parafascicular nucleus (PF) of the thalamus and the density of proliferating cells in the third ventricle. ResultsWe found that all three nuclei had a notably reduced cell density. This defect was associated with a reduced density of proliferating cells in the third ventricle, suggesting that the reduced cellularity in the MD, CM, and PF of fetuses with DS was due to neurogenesis impairment. The separate evaluation of projection neurons and interneurons in the MD, CM, and PF showed that in fetuses with DS the density of projection neurons was reduced, with no changes in interneuron density. ConclusionThis study provides novel evidence for DS-linked cellularity alterations in the MD, CM, and PF and suggests that altered signal processing in these nuclei may be involved in the impairment in higher-order control processes observed in individuals with DS starting from infancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call