Abstract

This paper proposes a model of a cerebellum motor learning based on a neuroadaptive robot manipulator controller. Impedance control is chosen as the basis of the model in preference to alternative robot control strategies because muscles do not act like pure force generators such as torque motors nor as pure displacement devices such as stepper motors but instead act more like tunable springs or compliance devices. Compliance control has the further advantage that it is applicable for a variety of motor tasks, and is both more robust and simple than alternative control strategies. Simulation results are presented to verify the performance of the proposed model. Specific results are presented for the applications of impedance control to the case where the end-effector is interacting with surfaces to avoid obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.