Abstract

Many manufacturing systems not only involve nonlinearities and nonvanishing disturbances but also are subject to actuation failures and multiple yet possibly conflicting objectives, making the underlying control problem interesting and challenging. In this article, we present a neuroadaptive fault-tolerant control solution capable of addressing those factors concurrently. To cope with the multiple objective constraints, we propose a method to accommodate these multiple objectives in such a way that they are all confined in certain range, distinguishing itself from the traditional method that seeks for a common optimum (which might not even exist due to the complicated and conflicting objective requirement) for all the objective functions. By introducing a novel barrier function, we convert the system under multiple constraints into one without constraints, allowing for the nonconstrained control algorithms to be derived accordingly. The system uncertainties and the unknown actuation failures are dealt with by using the deep-rooted information-based method. Furthermore, by utilizing a transformed signal as the initial filter input, we integrate dynamic surface control (DSC) into backstepping design to eliminate the feasibility conditions completely and avoid off-line parameter optimization. It is shown that, with the proposed neuroadaptive control scheme, not only stable system operation is maintained but also each objective function is confined within the prespecified region, which could be asymmetric and time-varying. The effectiveness of the algorithm is validated via simulation on speed regulation of extruding machine in tire production lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call