Abstract

Communication and computation resources are normally limited in remote/networked control systems, and thus, saving either of them could substantially contribute to cost reduction and life-span increasing as well as reliability enhancement for such systems. This article investigates the event-triggered control method to save both communication and computation resources for a class of uncertain nonlinear systems in the presence of actuator failures and full-state constraints. By introducing the triggering mechanisms for actuation updating and parameter adaptation, and with the aid of the unified constraining functions, a neuroadaptive and fault-tolerant event-triggered control scheme is developed with several salient features: 1) online computation and communication resources are substantially reduced due to the utilization of unsynchronized (uncorrelated) event-triggering pace for control updating and parameter adaptation; 2) systems with and without constraints can be addressed uniformly without involving feasibility conditions on virtual controllers; and 3) the output tracking error converges to a prescribed precision region in the presence of actuation faults and state constraints. Both theoretical analysis and numerical simulation verify the benefits and efficiency of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call