Abstract
This article investigates the tracking control problem for Euler-Lagrange (EL) systems subject to output constraints and extreme actuation/propulsion failures. The goal here is to design a neural network (NN)-based controller capable of guaranteeing satisfactory tracking control performance even if some of the actuators completely fail to work. This is achieved by introducing a novel fault function and rate function such that, with which the original tracking control problem is converted into a stabilization one. It is shown that the tracking error is ensured to converge to a pre-specified compact set within a given finite time and the decay rate of the tracking error can be user-designed in advance. The extreme actuation faults and the standby actuator handover time delay are explicitly addressed, and the closed signals are ensured to be globally uniformly ultimately bounded. The effectiveness of the proposed method has been confirmed through both theoretical analysis and numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.