Abstract

This paper presents an application of the space mapping concept in the modeling of semiconductor devices. A recently proposed device modeling technique, called neuro-space mapping (Neuro-SM), is described to meet the constant need of new device models due to rapid progress in the semiconductor technology. Neuro-SM is a systematic method allowing us to exceed the present capabilities of the existing device models. It uses a neural network to map the voltage and current signals between an existing device model (coarse model) and the actual device behavior (fine model), such that the mapped model becomes an accurate representation of the new device. An efficient training method based on analytical sensitivity analysis for such mapping neural network is also addressed. The trained Neuro-SM model can retain the speed of the existing device model while improving the model accuracy. The benefit of the Neuro-SM method is demonstrated by examples of SiGe HBT and GaAs MESFET modeling and use of the models in harmonic balance simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.