Abstract

Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.

Highlights

  • The complex and dynamic biological process of healing following an injury is linked to the activation of coagulation and of the immune system (Mancuso and Santagostino, 2017; Wang et al, 2017)

  • In this review the clotting factors will be addressed with Roman numbers, with the post-position of the letter “a” to indicate the activated factor (Giangrande, 2003) except for the FI-IV that will be addressed as fibrinogen, prothrombin, tissue factors (TFs) and Calcium (Ca2+) (Table 1)

  • neuro-immune regulators (NIReg) are constitutively expressed on neurons and acts as “Don’t eat me” signals for microglial cells that are maintained in a resting state, or they negatively regulate complement activation (CD59, CD46, Factor H (FH)) (Bedoui et al, 2018) (Figures 1, 2)

Read more

Summary

INTRODUCTION

The complex and dynamic biological process of healing following an injury is linked to the activation of coagulation and of the immune system (Mancuso and Santagostino, 2017; Wang et al, 2017). Reparative processes can functionally restore endothelial integrity after a damage (infectious, post-traumatic, shear stress-induced, or metabolic-related) and hereafter activate the immune system (Nurden, 2011; Mancuso and Santagostino, 2017). Activation of these integrated processes relies upon cellular components and circulating factors that are crucial to stimulate physiological repair and tissue rearrangement, and essential to the homeostasis of central nervous system (CNS) (De Luca et al, 2017). Thrombin on the intact vessel wall can inhibit itself: it binds to thrombomodulin and cleaves

Fibrin stabilizing factor
MULTIPLE SCLEROSIS
CEREBROVASCULAR DISEASES
NEOPLASTIC DISEASES
PSYCHIATRIC DISEASES
Findings
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call