Abstract

Endocannabinoids are endogenous lipids that activate selective G protein coupled receptors (CB1 and CB2), mostly found at neuronal presynaptic sites in the nervous system. One of the main consequences of the activation of CB receptors is a decrease in GABA or glutamate release, controlling cell excitability. Here we studied the expression of CB1 and CB2 receptors in E8C8 cultured retina cells (embryonic day 8 and 8 days in vitro) using immunocytochemistry and western blot analysis. We also evaluated their functions in terms of cyclic AMP (cAMP) production, single cell calcium imaging (SCCI) and GABA release induced in basal conditions or activated by l-Aspartate (L-ASP) in cell cultures or under ischemia in young chick retina. We show that both cannabinoid receptors are expressed in retinal neurons and glial cells. WIN 55,212-2 (WIN, a CB1/CB2 agonist) decreased cAMP production in cultured avian embryonic retinal cells in basal conditions. WIN also led to a decrease in the number of glial cells that increased Ca2+ levels evoked by ATP, but had no effect in Ca2+ shifts in neuronal cells activated by KCl. Finally, WIN inhibited [3H]-GABA release induced by KCl or L-ASP, accumulated in amacrine cells, but had no effect in the amount of GABA released in an oxygen glucose deprivation (OGD) condition. Altogether, our data indicate that cannabinoid receptors function as regulators of avian retina signaling at critical embryonic stages during synapse formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.