Abstract

The paper tackles the problem of robust fault detection using Takagi–Sugeno neuro-fuzzy (N-F) models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such an approach is corrupted by model uncertainty due to the fact that in real applications there exists a model–reality mismatch. In order to ensure reliable fault detection, the adaptive threshold technique is used to deal with the problem. The paper focuses also on the N-F model design procedure. The bounded-error approach is applied to generate rules for the model using available data. The proposed algorithms are applied to fault detection in a valve that is a part of the technical installation at the Lublin sugar factory in Poland. Experimental results are presented in the final part of the paper to confirm the effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.