Abstract
Abstract This paper discusses the application of adaptive neuro-fuzzy inference system (ANFIS) control for a parallel cascade control system. Parallel cascade controllers have two controllers, primary and secondary controllers in cascade. In this paper the primary controller is designed based on neuro-fuzzy approach. The main idea of fuzzy controller is to imitate human reasoning process to control ill-defined and hard to model plants. But there is a lack of systematic methodology in designing fuzzy controllers. The neural network has powerful abilities for learning, optimization and adaptation. A combination of neural networks and fuzzy logic offers the possibility of solving tuning problems and design difficulties of fuzzy logic. Due to their complementary advantages, these two models are integrated together to form more robust learning systems, referred to as adaptive neuro-fuzzy inference system (ANFIS). The secondary controller is designed using the internal model control approach. The performance of the proposed ANFIS-based control is evaluated using different case studies and the simulated results reveal that the ANFIS control approach gives improved servo and regulatory control performances compared to the conventional proportional integral derivative controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.