Abstract
One of the two goals of this paper is to briefly present two different methodologies that can be used to the design of intelligent decision support systems, in particular, from the field of medicine. The first approach, combining artificial neural networks and fuzzy sets, yields a neuro-fuzzy classifier that can be trained with both purely numerical data as well as qualitative, linguistic, fuzzy data that describe the decision-making process. The second approach – resulting in a rough classifier – combines all positive aspects of rule induction systems with the flexibility of statistical techniques for classification. The second goal of this paper is to perform a broad comparative analysis of both proposed methodologies (and two others) applied to: (a) the problem of selecting surgical and non-surgical cases in the veterinary domain of equine colic, (b) the problem of diagnosing benign and malign types of breast cancer, and (c) the problem of corporate bankruptcy prediction (corporate `financial health'). Several aspects of comparison have been considered including the accuracy of the systems, diversity of the data processed, transparency and the form of decisions made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.