Abstract

Welding is an efficient reliable metal joining process in which the coalescence of metals is achieved by fusion. Localized heating during welding, followed by rapid cooling, induce residual stresses in the weld and in the base metal. Determination of magnitude and distribution of welding residual stresses is essential and important. Data sets from finite element method (FEM) model are used to train the developed neural network model trained with genetic algorithm and particle swarm optimization (NN–GA–PSO model). The performance of the developed NN–GA–PSO model is compared neural network model trained with genetic algorithm (NN–GA) and neural network model trained with particle swarm optimization (NN–PSO) model. Among the developed models, performance of NN–GA–PSO model is superior in terms of computational speed and accuracy. Confirmatory experiments are performed using X-ray diffraction method to confirm the accuracy of the developed models. These developed models can be used to set the initial weld process parameters in shop floor welding environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.