Abstract
We devised spatial filters for multi-channel EEG that lead to signals which discriminate optimally between two conditions. We demonstrate the effectiveness of this method by classifying single-trial EEGs, recorded during preparation for movements of the left or right index finger or the right foot. The classification rates for 3 subjects were 94, 90 and 84%, respectively. The filters are estimated from a set of multi-channel EEG data by the method of Common Spatial Patterns, and reflect the selective activation of cortical areas. By construction, we obtain an automatic weighting of electrodes according to their importance for the classification task. Computationally, this method is parallel by nature, and demands only the evaluation of scalar products. Therefore, it is well suited for on-line data processing. The recognition rates obtained with this relatively simple method are as good as, or higher than those obtained previously with other methods. The high recognition rates and the method's procedural and computational simplicity make it a particularly promising method for an EEG-based brain–computer interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electroencephalography and Clinical Neurophysiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.