Abstract

The 4 major ganglioside species, GM1, GD1a, GD1b and GT1b (200 μg/ml), were tested individually for the ability to stimulate neuronal trophic responses. The growth parameters measured were: (a) morphologic changes, quantitated by computer-assisted morphometry of neurite length and number per soma, and (b) metabolic changes, indicated by alterations in ornithine decarboxylase activity (ODC). In addition, the interaction of each ganglioside with nerve growth factor (NGF) was investigated with an NGF-responsive pheochromocytoma PC12 cell line and NGF-insensitive neuroblastoma Neuro-2a cultures. PC12 cells responded to gangliosides only in the presence of NGF (20 μg/ml): GM1 produced the greatest morphologic response, but did not alter metabolic levels; GT1b increased both parameters. The presence (5 μg/ml) or absence of NGF did not have an effect on the ganglioside-mediated morphologic responses of Neuro-2a cells to each species: GD1b elicited the greatest increase in neurite length, while GD1a and GT1b stimulated both length and number. In contrast, while GT1b alone was able to elevate ODC activity independently of NGF, the simultaneous exposure of Neuro-2a cultures to NGF and GM1 or GD1a resulted in a stimulation of cellular metabolism. These results indicate that each ganglioside species has a specific target action in the stimulation of different trophic responses and that performance in one category is not a predictor of the result in another. In addition, it is possible to confer a sensitivity to NGF by simultaneous treatment with specific gangliosides. This indicates that membrane gangliosides may modulate the actions of neurotrophic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.