Abstract

BackgroundTo date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems.ResultsHere we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology.ConclusionsNeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.

Highlights

  • To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures

  • Measurement of Neurite Outgrowth in high density cultures of differentiating P19 stem cells We first tested whether the neuronal morphology measurement algorithm in NeuriteQuant can extract neuromorphological features from differentiating mouse P19 cells, a valuable pluripotent, stem cell-like model for neuronal differentiation and neuritogenesis [8]

  • NeuriteQuant measurements provide a meaningful characterization of neuronal morphology and they can be used to identify a wide range of morphological changes with high sensitivity

Read more

Summary

Introduction

Some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems. Manual analysis of neuronal morphology is time consuming and becomes impractical for large datasets. While specialized commercial software applications are available to measure neurite outgrowth, such tools are usually not openly available for user customization beyond the supplied standard interface. Free software tools for quantitative analysis of. The toolkit is open-source and based on the free image analysis software program ImageJ. NeuriteQuant is configured to process large, complex datasets produced by automated screening microscopes (Figure 1). Results are automatically organized into a web-based data browser, which provides detailed graphical representations of neuronal morphological measurements, as well as links to the raw images

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.