Abstract

BackgroundGlioblastomas are highly infiltrative tumors, and differentiating between non-enhancing tumors (NETs) and vasogenic edema (Edemas) occurring in the non-enhancing T2-weighted hyperintense area is challenging. Here, we differentiated between NETs and Edemas in glioblastomas using neurite orientation dispersion and density imaging (NODDI) and diffusion tensor imaging (DTI). Materials and methodsData were collected retrospectively from 21 patients with primary glioblastomas, three with metastasis, and two with meningioma as controls. MRI data included T2 weighted images and contrast enhanced T1 weighted images, NODDI, and DTI. Three neurosurgeons manually assigned volumes of interest (VOIs) to the NETs and Edemas. The DTI and NODDI-derived parameters calculated for each VOI were fractional anisotropy (FA), apparent diffusion coefficient (ADC), intracellular volume fraction (ICVF), isotropic volume fraction (ISOVF), and orientation dispersion index. ResultsSixteen and 14 VOIs were placed on NETs and Edemas, respectively. The ICVF, ISOVF, FA, and ADC values of NETs and Edemas differed significantly (p < 0.01). Receiver operating characteristic curve analysis revealed that using all parameters allowed for improved differentiation of NETs from Edemas (area under the curve = 0.918) from the use of NODDI parameters (0.910) or DTI parameters (0.899). Multiple logistic regression was performed with all parameters, and a predictive formula to differentiate between NETs and Edemas could be created and applied to the edematous regions of the negative control-group images; the tumor prediction degree was well below 0.5, confirming differentiation as edema. ConclusionsUsing NODDI and DTI may prove useful in differentiating NETs from Edemas in the non-contrast T2 hyperintensity region of glioblastomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call