Abstract

Classically, estrogen acts on cells by directly activating gene transcription driven by ligand-bound nuclear estrogen receptors (ER). Accumulating evidence demonstrates that estrogen acts on neurons by utilizing diverse molecular mechanisms, including rapid signaling by proteins localized to the plasma membrane. Recent studies showing that ERalpha localizes to axons and dendrites of hippocampal neurons suggest that nonnuclear stores of the receptor may transduce estrogen signaling. Here, we have studied the subcellular localization, dynamic regulation, and function of ERalpha in mouse cortical neurons. Estrogen-stimulated mouse cortical neurons activate both estrogen response element (ERE) stimulated transcription and rapid activation of p44/42 mitogen-activated protein kinases (MAPK). We demonstrate that green fluorescent protein (GFP)-tagged ERalpha localizes to neurites in cultured cortical neurons and that the expression within neurites can be down-regulated by estrogen or up-regulated by antiestrogen administered during synthesis. Neurite ERalpha appears to be directed to neurites directly from its site of translation and not from nuclear stores. By using confocal microscopy, we show that ERalpha within neurites stimulates local activation of p44/42 MAP kinases in response to estrogen. We conclude that hormonal status alters subcellular ERalpha targeting in cortical neurons and that neurite-expressed ERalpha is important in the activation of local MAPK signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.