Abstract
Morphological and biochemical parameters of neuroblastoma differentiation were assessed in 12 clonal derivatives of the N-18 mouse neuroblastoma cell line selected for their ouabain-resistant (ouar) property. When cultured in a normal growth medium, nine of the 12 ouar cell lines exhibited a more complex pattern of neurite outgrowth than the parental N-18 cells. The morphological pattern most frequently observed with the ouar cells was the extension of several branched processes per cell. This pattern of spontaneous neurite outgrowth in the ouar cell lines can be correlated with an increase in expression of the 47,000-dalton RI cyclic AMP (cAMP)-binding protein. The growth rate, intracellular level of cAMP, and acetylcholinesterase activity of the ouar cell lines were not significantly different from those of the parental N-18 neuroblastoma cells. Treatment of the parental and ouar neuroblastoma cell lines with 1 mM N6, O2-dibutyryl cAMP promoted an elaborate pattern of neurite outgrowth and marked increases in acetylcholinesterase and RI cAMP-binding activities. The distinctive pattern of differentiation phenotype exhibited by the ouar cells and the dibutyryl cAMP-induced differentiated neuroblastoma cell suggests that these two protocols yielded different degrees of differentiation. Furthermore, our results suggest a linkage of the biochemical events underlying ouabain resistance and expression of differentiation phenotypes in the mouse neuroblastoma cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.